T: Nature ID: 191 I: 3077 P: 17.79 C: 0.0006

   Twitter Google Facebook LinkedIn Tumblr StumbleUpon Reddit Pinterest
Love animal life

Reuters shows animal life in  the world

 Love animal lifeVideo content from Reuters, Image from http://www.abeatingheart.ca/

T: Nature ID: 666 I: 1587 P: 45.34 C: 0.0013

   Twitter Google Facebook LinkedIn Tumblr StumbleUpon Reddit Pinterest

First Flower Grown in Space Station's Veggie Facility

 HAPPENED IN 2016On Jan. 16, 2016, Expedition 46 Commander Scott Kelly shared photographs of a blooming zinnia flower in the Veggie plant growth system aboard the International Space Station. Kelly wrote, "Yes, there are other life forms in space! #SpaceFlower #YearInSpace"

This flowering crop experiment began on Nov. 16, 2015, when NASA astronaut Kjell Lindgren activated the Veggie system and its rooting "pillows" containing zinnia seeds. The challenging process of growing the zinnias provided an exceptional opportunity for scientists back on Earth to better understand how plants grow in microgravity, and for astronauts to practice doing what they’ll be tasked with on a deep space mission: autonomous gardening. In late December, Kelly found that the plants "weren't looking too good," and told the ground team, “You know, I think if we’re going to Mars, and we were growing stuff, we would be responsible for deciding when the stuff needed water. Kind of like in my backyard, I look at it and say ‘Oh, maybe I should water the grass today.’ I think this is how this should be handled.”

The Veggie team on Earth created what was dubbed “The Zinnia Care Guide for the On-Orbit Gardener,” and gave basic guidelines for care while putting judgment capabilities into the hands of the astronaut who had the plants right in front of him. Rather than pages and pages of detailed procedures that most science operations follow, the care guide was a one-page, streamlined resource to support Kelly as an autonomous gardener. Soon, the flowers were on the rebound, and on Jan. 12, pictures showed the first peeks of petals beginning to sprout on a few buds.

Image Credit: NASA


T: Nature ID: 674 I: 1608 P: 45.94 C: 0.0012

   Twitter Google Facebook LinkedIn Tumblr StumbleUpon Reddit Pinterest

A new view of the tree of life

 HAPPENED IN 2016Abstract
The tree of life is one of the most important organizing principles in biology1. Gene surveys suggest the existence of an enormous number of branches2, but even an approximation of the full scale of the tree has remained elusive. Recent depictions of the tree of life have focused either on the nature of deep evolutionary relationships3,​4,​5 or on the known, well-classified diversity of life with an emphasis on eukaryotes6. These approaches overlook the dramatic change in our understanding of life's diversity resulting from genomic sampling of previously unexamined environments. New methods to generate genome sequences illuminate the identity of organisms and their metabolic capacities, placing them in community and ecosystem contexts7,8. Here, we use new genomic data from over 1,000 uncultivated and little known organisms, together with published sequences, to infer a dramatically expanded version of the tree of life, with Bacteria, Archaea and Eukarya included. The depiction is both a global overview and a snapshot of the diversity within each major lineage. The results reveal the dominance of bacterial diversification and underline the importance of organisms lacking isolated representatives, with substantial evolution concentrated in a major radiation of such organisms. This tree highlights major lineages currently underrepresented in biogeochemical models and identifies radiations that are probably important for future evolutionary analyses.

Early approaches to describe the tree of life distinguished organisms based on their physical characteristics and metabolic features. Molecular methods dramatically broadened the diversity that could be included in the tree because they circumvented the need for direct observation and experimentation by relying on sequenced genes as markers for lineages. Gene surveys, typically using the small subunit ribosomal RNA (SSU rRNA) gene, provided a remarkable and novel view of the biological world1,9,10, but questions about the structure and extent of diversity remain. Organisms from novel lineages have eluded surveys, because many are invisible to these methods due to sequence divergence relative to the primers commonly used for gene amplification7,11. Furthermore, unusual sequences, including those with unexpected insertions, may be discarded as artefacts7.

Whole genome reconstruction was first accomplished in 1995 (ref. 12), with a near-exponential increase in the number of draft genomes reported each subsequent year. There are 30,437 genomes from all three domains of life—Bacteria, Archaea and Eukarya—which are currently available in the Joint Genome Institute's Integrated Microbial Genomes database (accessed 24 September 2015). Contributing to this expansion in genome numbers are single cell genomics13 and metagenomics studies. Metagenomics is a shotgun sequencing-based method in which DNA isolated directly from the environment is sequenced, and the reconstructed genome fragments are assigned to draft genomes14. New bioinformatics methods yield complete and near-complete genome sequences, without a reliance on cultivation or reference genomes7,15. These genome- (rather than gene) based approaches provide information about metabolic potential and a variety of phylogenetically informative sequences that can be used to classify organisms16. Here, we have constructed a tree of life by making use of genomes from public databases and 1,011 newly reconstructed genomes that we recovered from a variety of environments (see Methods).

To render this tree of life, we aligned and concatenated a set of 16 ribosomal protein sequences from each organism. This approach yields a higher-resolution tree than is obtained from a single gene, such as the widely used 16S rRNA gene16. The use of ribosomal proteins avoids artefacts that would arise from phylogenies constructed using genes with unrelated functions and subject to different evolutionary processes. Another important advantage of the chosen ribosomal proteins is that they tend to be syntenic and co-located in a small genomic region in Bacteria and Archaea, reducing binning errors that could substantially perturb the geometry of the tree. Included in this tree is one representative per genus for all genera for which high-quality draft and complete genomes exist (3,083 organisms in total).

Despite the methodological challenges, we have included representatives of all three domains of life. Our primary focus relates to the status of Bacteria and Archaea, as these organisms have been most difficult to profile using macroscopic approaches, and substantial progress has been made recently with acquisition of new genome sequences7,8,13. The placement of Eukarya relative to Bacteria and Archaea is controversial1,4,5,17,18. Eukaryotes are believed to be evolutionary chimaeras that arose via endosymbiotic fusion, probably involving bacterial and archaeal cells19. Here, we do not attempt to confidently resolve the placement of the Eukarya. We position them using sequences of a subset of their nuclear-encoded ribosomal proteins, an approach that classifies them based on the inheritance of their information systems as opposed to lipid or other cellular structures5.

Figure 1 presents a new view of the tree of life. This is one of a relatively small number of three-domain trees constructed from molecular information so far, and the first comprehensive tree to be published since the development of genome-resolved metagenomics. We highlight all major lineages with genomic representation, most of which are phylum-level branches (see Supplementary Fig. 1 for full bootstrap support values). However, we separately identify the Classes of the Proteobacteria, because the phylum is not monophyletic (for example, the Deltaproteobacteria branch away from the other Proteobacteria, as previously reported2,20).


T: Nature ID: 667 I: 1628 P: 46.51 C: 0.0012

   Twitter Google Facebook LinkedIn Tumblr StumbleUpon Reddit Pinterest

Will the Zika virus prompt Latin America to rethink abortion and birth control?

 HAPPENED IN 2016The Zika virus outbreak and its probable association with microcephaly in newborns are prompting calls to loosen Latin America's strict abortion laws and make birth control more readily available.

Abortion is fully criminalized in six countries in the region. In El Salvador, for instance, women who have abortions can face prison. In many other countries, including Brazil and Colombia, abortion is permitted only in cases of rape, incest or fetal impairment.
As Zika raises anxieties about babies born with significant medical problems, some physicians and reproductive health advocates think the virus should create another legal exception for abortion.
Even though abortion is outlawed in much of Latin America, women still seek it out at legal and physical risk. In fact, 13 percent of maternal deaths (the fourth highest cause) in the region can be attributed to unsafe abortions.
Concern about Zika could lead to real change for reproductive health for millions of women in the region. But this can happen only if the expansion of abortion and contraception is based on human rights and reproductive health equity, not driven primarily by fears of defective babies.
Abortion is restricted in most of Latin America
Abortion is fully criminalized, with no exceptions, in El Salvador, Chile, Dominican Republic, Haiti, Nicaragua and Suriname. In El Salvador, 30 to 40 women are serving prison sentences for seeking abortions.
In many other countries, including Argentina, Costa Rica, Bolivia, Brazil and Colombia, abortion is permitted under certain circumstances.
In Brazil, for instance, abortion has been allowed since 1940 in instances of rape or endangerment to the woman. Women who seek abortions outside these exceptions and the physicians who perform the procedure can be imprisoned.


T: Nature ID: 595 I: 2602 P: 51.02 C: 0.0008

Visit @MIZA to knowThe family Chrysomelidae, commonly known as leaf beetles.

 InsectsThe family Chrysomelidae, commonly known as leaf beetles include in excess of 35,000 species in over 2,500 genera, making it one of the largest families of beetles.

This site presents the collection of Chrysomelidae at the Museo del Instituto de Zoología Agrícola, Facultad de Agronomía, Universidad Central de Venezuela. The vast majority of specimens of this collection were collected in travel in Central and South America by the Bechyné's or received in exchange.


T: Nature ID: 638 I: 2271 P: 51.61 C: 0.0009

   Twitter Google Facebook LinkedIn Tumblr StumbleUpon Reddit Pinterest

History of Ecological Sciences, Ecological Aspects of Entomology During the 1800s

 EntomologystAn extensive literature on the history of entomology (see Literature Guide below) provides the basis for a discussion of aspects of ecologically relevant entomology for the 1800s, with two topics deferred to later parts of this history: diseases of insects and insects as vectors of human disease, to part 46 on parasitism and the germ theory of disease; and pollination ecology and domestic bees, to part 52 on symbiosis.
We saw in parts 21 and 30 (Egerton 2006, 2008) that there were many important studies on insects during the 1700s, and in parts 33 and 41 (Egerton 2009b, 2012a) we met notable entomologists of the 1800s: Thomas Say (1787–1834) and Henry Walter Bates (1825–1892). Alfred Russel Wallace (1823–1913), discussed in parts 41–42 (Egerton 2012a, b), also notably contributed to entomology. Charles Darwin (1809–1882) had collected beetles at Cambridge and insects on the voyage of the Beagle; he discussed insects in the Origin of Species, and he studied insects in relation to pollination and insectivorous plants (Riley 1882, Egerton 2010, 2011b, Carton 2011). Some of these men might themselves be classified as “stamp collectors,” but taxonomy and systematics were especially important for entomology if it were ever to become a sophisticated science, because it was essential for zoologists to distinguish whatever species they studied so others could verify or refute claims made about particular species.


T: Nature ID: 633 I: 2355 P: 53.52 C: 0.0008

   Twitter Google Facebook LinkedIn Tumblr StumbleUpon Reddit Pinterest

Se le invita a participar en la Iniciativa para el @MIZAUCV. Entérese abriendo el enlace.

 Iniciativa-MIZAMIZA, Necesidad esencial para PROTEGER nuestro patrimonio en el que se representan nuestras colecciones y los equipos necesarios para continuar con nuestro trabajo de investigación.

Se requiere:
Reparación cable de fibra óptica.

Tipo solicitud: Urgente.
Modalidad: Donación.


T: Nature ID: 645 I: 2307 P: 53.65 C: 0.0009

   Twitter Google Facebook LinkedIn Tumblr StumbleUpon Reddit Pinterest

Se le invita a participar en la Iniciativa para el @MIZAUCV. Entérese abriendo el enlace. 7

 Iniciativa-MIZA-SEGMIZA, Necesidad esencial para PROTEGER nuestro patrimonio en el que se representan nuestras colecciones y los equipos necesarios para continuar con nuestro trabajo de investigación.

Se requiere:
Un protector eléctrico para aire acondicionados de 220v, 36.000 Btu.

Tipo solicitud: Urgente.
Modalidad: Donación.


T: Nature ID: 590 I: 2953 P: 56.79 C: 0.0007

Contribuir al conocimiento de la fauna venezolana y de otras áreas del Neotrópico @MIZAUCV apoyemos a la UCV

 MuseosEI Museo del Instituto de Zoología Agrícola “Francisco Fernández Yépez” (MIZA), es una institución dedicada al estudio de la biodiversidad tropical. Tenemos la convicción de que el conocimiento de nuestro patrimonio biológico está íntimamente relacionado con su preservación y uso sostenible, es por ello que la educación ambiental es una herramienta vital para formar ciudadanos conscientes y protectores de nuestro patrimonio biológico.

Hay que visitarlo

Avenida 19 de Abril/ Avenida Casanova Godoy, entrada Campus UCV, Maracay


T: Nature ID: 205 I: 3428 P: 19.82 C: 0.0006

   Twitter Google Facebook LinkedIn Tumblr StumbleUpon Reddit Pinterest
Dogs and food

Good Dog, Bad Food: Foods for People That Are Bad for Your Dog

 Dogs and foodIf you consider the family dog, well, family ”and are apt to toss him a piece of your food now and then” proceed with caution. Some foods meant for human consumption can be dangerous, and even deadly, to your dog. A food might harm one dog and not another. It depends on a number of factors, including the animal's genetic makeup and size, as well as the amount that animal eats. How are people and animals different when it comes to food?
Image from http://gardenandgun.com/


T: Nature ID: 157 I: 3480 P: 20.12 C: 0.0006

   Twitter Google Facebook LinkedIn Tumblr StumbleUpon Reddit Pinterest
Pixiebob CATS

The Pixiebob is a domestic cat visually resembling the North American Bobcat.

 Pixiebob CATSThe Pixiebob is a domestic cat visually resembling the North American Bobcat. Despite its fierce look, the Pixiebob is noted for its loving, trustworthy and tractable personality. Heavy brows with bushier hair above the eyes, lynx tipping on the ears and longer mutton chops on the cheeks complete the wild look of Pixiebobs. The tail can measure from 1 to 6 inches in length. These cats have brown tabby markings on a tan or reddish background and may be polydactyl (having extra toes).


T: Nature ID: 270 I: 3949 P: 24.08 C: 0.0005

El lenguaje corporal de los gatos

 GatosLos gatos son animales reservados, no son tan impulsivos ni expresivos como los perros así que ocultan muy bien sus emociones y al ser también tan comedidos en sus movimientos elegantes y sus actos hacia nosotros, tenemos que estar con cuatro ojos para averiguar el significado que entraña cada acción o movimiento realizado por ellos. Además de para entenderles muchas veces nos va a costar averiguar que están enfermos, porque lo ocultan tremendamente bien. Por ello hoy en ExpertoAnimal vamos a ver una serie de pautas que nos ayudarían a traducir el lenguaje corporal de nuestros gatos. Sigue leyendo: http://www.expertoanimal.com/el-lenguaje-corporal-de-los-gatos-ejemplos-y-imagenes-3148.html#ixzz4H2lAFaDc



Teléfonos: +58 212 578 1145
Fax: +58 212 576 3892