Polynomials evaluated at integers by John D. Cook

Polynomials evaluated at integers by  John D.  CookLet p(x) = a0 + a1x + a2x2 + … + anxn and suppose at least one of the coefficients ai is irrational for some i ≥ 1. Then a theorem by
Weyl says that the fractional parts of p(n) are equidistributed as n varies over the integers. That is, the proportion of values that land
in some interval is equal to the length of that interval.

Clearly it’s necessary that one of the coefficients be irrational. What may be surprising is that it is sufficient.

If the coefficients are all rational with common denominator N, then the sequence would only contain multiples of 1/N. The interval
[1/3N, 2/3N], for example, would never get a sample. If a0 were irrational but the rest of the coefficients were rational, we’d have the
same situation, simply shifted by a0.

This is a theorem about what happens in the limit, but we can look at what happens for some large but finite set of terms. And we can
use a χ2 test to see how evenly our sequence is compared to what one would expect from a random sequence.
Consultar la fuente de esta información  

Google Facebook LinkedIn VK Tumblr StumbleUpon Reddit Pinterest Print
T: Education ID: 908 I: 681 P: 37.83 C: 0.0029 F: 0.689
Especificaci?n, suministro, instalaci?n y mantenimiento de sistemas de aplicaci?n 
autom?tica de etiquetas. N:854  
Verosaka representaciones N:59  
Prácticas de orden de magnitud. Saber decir y escribir los números. Software  diseñado 
   para correr en Windows

Ins?lito universo N:25  
Publicidad infolinks

Pr?cticas de orden de magnitud. Saber decir y escribir los n?meros. Software  dise?ado 
   para correr en Windows N:849  


Teléfonos: +58 212 578 1145
Fax: +58 212 576 3892

Error in the consult..Incorrect parameter count in the call to native function 'DATEDIFF'